Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification

نویسندگان

  • Fa Wu
  • Peijun Hu
  • Dexing Kong
چکیده

This paper presents a new version of Dropout called Split Dropout (sDropout) and rotational convolution techniques to improve CNNs’ performance on image classification. The widely used standard Dropout has advantage of preventing deep neural networks from overfitting by randomly dropping units during training. Our sDropout randomly splits the data into two subsets and keeps both rather than discards one subset. We also introduce two rotational convolution techniques, i.e. rotate-pooling convolution (RPC) and flip-rotate-pooling convolution (FRPC) to boost CNNs’ performance on the robustness for rotation transformation. These two techniques encode rotation invariance into the network without adding extra parameters. Experimental evaluations on ImageNet2012 classification task demonstrate that sDropout not only enhances the performance but also converges faster. Additionally, RPC and FRPC make CNNs more robust for rotation transformations. Overall, FRPC together with sDropout bring 1.18% (model of Zeiler and Fergus [24], 10-view, top-1) accuracy increase in ImageNet 2012 classification task compared to the original network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Convolution Networks

Previous research has shown that computation of convolution in the frequency domain provides a significant speedup versus traditional convolution network implementations. However, this performance increase comes at the expense of repeatedly computing the transform and its inverse in order to apply other network operations such as activation, pooling, and dropout. We show, mathematically, how co...

متن کامل

Deep Epitomic Convolutional Neural Networks

Deep convolutional neural networks have recently proven extremely competitive in challenging image recognition tasks. This paper proposes the epitomic convolution as a new building block for deep neural networks. An epitomic convolution layer replaces a pair of consecutive convolution and max-pooling layers found in standard deep convolutional neural networks. The main version of the proposed m...

متن کامل

Convolutional Neural Network for Image Classification

Neural network, as a fundamental classification algorithm, is widely used in many image classification issues. With the rapid development of high performance computing device and parallel computing devices, convolutional neural network also draws increasingly more attention from many researchers in this area. In this project, we deduced the theory behind back-propagation neural network and impl...

متن کامل

Feed Forward and Backward Run in Deep Convolution Neural Network

Convolution Neural Networks (CNN), known as ConvNets are widely used in many visual imagery application, object classification, speech recognition. After the implementation and demonstration of the deep convolution neural network in Imagenet classification in 2012 by krizhevsky, the architecture of deep Convolution Neural Network is attracted many researchers. This has led to the major developm...

متن کامل

An Encoder-Decoder Based Convolution Neural Network (CNN) for Future Advanced Driver Assistance System (ADAS)

We propose a practical Convolution Neural Network (CNN) model termed the CNN for Semantic Segmentation for driver Assistance system (CSSA). It is a novel semantic segmentation model for probabilistic pixel-wise segmentation, which is able to predict pixel-wise class labels of a given input image. Recently, scene understanding has turned out to be one of the emerging areas of research, and pixel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.08754  شماره 

صفحات  -

تاریخ انتشار 2015